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When deformation is not macroscopically homogeneous, the structure variables that 
define the mechanical state of a material depend on position and their space derivatives 
appear in the constitutive equations for plastic deformation. The general form of these 
equations in uniaxial deformation is written for the case of a single structure variable. 
Constitutive equations for deformation by Liiders bands are derived in which the density 
of mobile dislocations plays the role of the structure variable. The equations exemplify 
the general form of a constitutive law for inhomogeneous deformation. Strain and strain 
rate profiles in a tensile specimen traversed by a "steady state" Liiders band are obtained 
by integration of the constitutive equations and the band parameters are determined. 
Comparison with experimental results is quite favourable in spite of the simplifications 
introduced. 

1. Introduction 
Considerable attention has been given, in recent 
years, to the development of  accurate constitutive 
equations of  plasticity (e.g. [1 ,2]) .  The general 
form of the equations for homogeneous plastic 
deformation is now well established [3-5] .  The 
equations are first written for uniaxial deformation 
(tension and compression), since most of  the 
experimental data is obtained from these types of  
tests, and then additional relations involving the 
stress and strain rate tensors are introduced in 
order to deal with the more general case of triaxial 
stress states [6 -8] ,  eventually including aniso- 
tropy [8,9].  

Specific forms of  constitutive equations that 
have been proposed for individual materials or 
classes of materials under various uniaxial defor- 
mation regimes (e.g. [7, 10-14)usual ly  contain 
only one structure viarable. In such cases, the con- 
stitutive law includes two equations. The first, is 
the rate equation 

= f ( a ,  S, T) (1) 

where ~ = de /d t  is the plastic strain rate, (r is the 
applied stress, T is the temperature and S is the 
structure variable. In principle, higher order time 
derivatives of  e and o can be introduced, but to 
simplify we shall admit Equation 1 for the rate 
equation*. The second equation gives the time rate 
o f  change of  the structure variable, S: 

dS 
- -  = g ( o , S ,  r ) .  (2) 
dt 

In these equations, f and g are definite functions 
for each material. When written for a class of 
materials, f and g may depend on various param- 
eters which can be regarded as structure indepen- 
dent properties of  each material in the class. The 
time t is not among the variables on wh ich f  and g 
depend explicitly [15]. When the deformation is 
homogeneous, as we are assuming presently, the 
space coordinates do not appear because the inter- 

*It is unlikely that ~ depends on d, at least for thermally activated deformation [14]. But inertial effects can justify the 
inclusion of ~" in f. 
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vening variables are independent of position. The 
strain e can be obtained by integration of Equations 
1 and 2 for any deformation path defined, for 
example, by o(t) or ~(t). The strain is a path vari. 
able [10] and for this reason cannot appear in the 
general form of the constitutive law. 

Strictly, deformation is not homogeneous at 
the atomic level, although it can be treated as 
homogeneous on a macroscopic scale. Frequently, 
however, deformation is not macroscopically 
homogeneous. Examples include most forming 
operations and tensile deformation after necking 
(the stress state varies from point to point) and the 
tensile deformation due to propagation of Ltiders 
bands (even if the stress is assumed as uniform). In 
such cases, the space variables have to be introduced 
in the constitutive equations. 

The purpose of this paper is twofold. First, we 
discuss the general form of the constitutive law 
applicable to nonhomogeneous deformation. This 
will be done for the case where only one structure 
parameter, S, and one Cartesian coordinate, x, 
have to be considered. The simplest example is a 
tensile test of a tappered specimen, provided we 
neglect the triaxiality of the stress and assume a = 
o(x). If the specimen is initially homogeneous, S is 
initially independent of p0sifion;.but this situation 
will be destroyed by deformation (Equation 2) 
and S = S(x). In theoretical treatments of  plastic 
instability and neck evolution in tension, this type 
of approach is frequently used (e.g. [16, 17]) but, 
as will be shown, the straightforward generalization 
of Equations 1 and 2, with o(x) a.~!d S(x), may not 
be sufficient to describe nonhomogeneous defor- 
mation. 

The other example of simple inhomogeneous 
deformation, to which special attention will be 
given in this paper, is the propagation of a Liiders 
band in a tensile specimen. A particular form of 
a constitutive law for Ltiders band deformation 
will be derived, based on a simple dislocation 
model. In spite of the simplicity of  the approach, 
the predictions that can be derived are in very 
good agreement with experimental observations. 

2. The constitutive law for inhomogeneous 
deformation 

What is the form of the constitutive law, that 
corresponds to a generalization of Equations 1 and 
2, when one space coordinate (e.g. a Cartesian 
coordinate) has to be introduced to account for 
the inhomogeneity of deformation? It will be 

assumed that the temperature is uniform. The 
space coordinate, x, does not have t o  appear 
explicitly as a variable in the functions f and g in 
Equations 1 and 2, as noted by McCartney [15] in 
a discussion on the role of time and space coordi- 
nates in constitutive equations. But the fact that 
now o(x) and S(x) implies that both d and the 
time rate of change of S, which we write as as~at, 
are functions of x. The question is to decide 
whether or not additional variables have to be 
introduced in the arguments of the functions f and 
g. Possible candidates are ao/ax, aS/ax and higher 
order space derivatives (mixed time and space 
derivatives of o a n d S w i l l  be excluded, for the 
same reason as d was excluded in Equations 1 and 
2). The inclusion of aa/ax, b2e/ax2 . . . .  could be 
justified to account for a stress concentration effect 
in a tensile specimen with non-uniform cross-sec- 
tion, but this situation will not be considered. We 
shall then introduce, as an additional variable, the 
derivative ~S/Ox (and discard ~2S/ax2 . . . .  for 
simplicity). The dependence of ~ on OS/~x implies 
that the strain rate at x at the instant t depends 
not only on the local state (i.e. the value of S at 
x ,  t) but also on the state at neighbouring regions 
at the same instant. This does not necessarily mean 
that "information" from neighbouring regions is 
received instantaneously at x. An example will be 
given in Section 3.2 of a situation in which 
depends in fact on OS/3x. 

From the previous discussion we may conclude 
that the form of the constitutive equations for 
nonhomogeneous deformation in the simplest 
situations (one structure parameter, one space 
coordinate, uniform temperature) is the following: 

= f  

as ( saS) 
at  = g ' 'Ox ' T  

with o(x); S(x); T 

(3a) 

(3b) 

If T(x), an equation describing the transport of 
energy (heat) has to be added to the constitutive 
equations, from which the variation of temperature 
with time and space can be derived. But it is 
unlikely that aT/Ox should be included in the 
arguments o f f  and g in Equations 3. 

Auxiliary equations may be written for the 
total rate of  elongation, L =  dL/dt (L is the 
specimen length along x) 

L = (:" #(x) dx (4) 
, I o  
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and for the stress at any point produced by an 
applied load P in the x direction: 

P 
o ( x )  - (5) 

A (x) 

where A(x) is the area~of the cross section at x. 
Finally, the constancy of volume gives 

)i(x) 
~(x) - A (x)" (6) 

Equations 3 to 6 can be integrated to give A(x), 
e(x) and S(x) as a function of time for a given 
deformation path L(t) or P(t). 

3. LiJders band propagation 
In this section we introduce a simplified model for 
Liiders band propagation in a tensile specimen, 
which illustrates the genera1 form (Equation 3) of 
the constitutive law for nonhomogeneous defor- 
mation. The model leads to very simple constitutive 
equations, which can be integrated to obtain the 
strain rate profile in a steady state LiJders band 
and the various band parameters. The predictions 
of the model will be compared with experimental 
results of the literature. 

3.1. The  model  and the  cons t i tu t ive  law 
It is assumed that the band propagates under a 
constant applied load and the tensile stress a is 
independent of  position x in the specimen. That is, 
both the area change due to the passage of the 
band and the consequent triaxility of the stress in 
the specimen will be neglected. 

For the rate equation we use the simple form 

= p b  v (7) 

which relates the strain rate at x to the local den- 
sity p of mobile dislocations of Burgers vector b 
and average velocity v. This velocity is assumed as 
a constant (under constant a); p is the structure 
variable. To take into account the variation of v 
with x, which may well occur in Liiders band 
propagation even at constant o, it would be neces- 
sary to introduce the total dislocation density and 
write two additional relations, respectively, 
between this density and p and between the total 
density and the accumulated strain, as in the treat- 
ment of S~ndstrom and Lagneborg [18] of  discon- 
tinuous yielding. This would complicate consider- 
ably the constitutive equations and would require 
some guesses about the form of those relations. A 
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geometrical constant factor has been neglected in 
the second term of Equation 7. 

With these simplifications, we now turn to the 
variation of the structure variable p with time, at 
each point x in the specimen. Two contributions 
will be considered. The first, (ap/at)a, is due to 
the ageing of mobile dislocations by solutes (or, in 
general, the stopping of dislocations by non- 
activable obstacles) for which we use the simple 
decay equation 

where ra is a characteristic time interval for ageing: 
the mobile dislocation density fails to lie of its 
initial value in %. 

The second source of variation of p with time 
at a given position, (0p/~t)s, is related to the 
spreading of the mobile dislocations. Siindstrom 
and Lagneborg [18] have noted that this condition 
is crucial for Ltiders band propagation and intro- 
duced a somewhat arbitrary broadening function 
to take into account the effect. 

Simultaneously with the broadening of the dis- 
location distribution there may be an effect of 
stress concentration or amplification produced by 
the net incoming dislocations (due, for example, 
to dislocation pile-ups [19]). The inclusion of this 
effect in the constitutive equations could be 
achieved by defining an effective stress which 
differs from a by a term that depends on Op/~x. 
In this approach, the strain rate would depend on 
Op/Ox, and the rate equation would be of general 
form (Equation 3a), with a dependence of ~ on 
OS/~x. The stress concentration may produce 
fresh dislocations (by unpinning or by activation 
of sources) but we shall admit below that the dis- 
location velocity is unaffected. 

Let us now introduce in the constitutive 
equations the effects of broadening and fresh dis- 
location generation. To do this, we first admit that 
the total length of mobile dislocation segments is 
conserved, in which case we may write: 

3(~-21 + div (p v) = 0 (9) 
\m/ S 

which is the usual form of the conservation (or 
continuity) law for a fluid of density p and velocity 
v. To account for the generation of fresh dis- 
locations we should introduce an extra term, ~g, 
in Equation 9, but this would make difficult the 
integration of this equation. We prefer tO intro- 



duce a factor k in div(pv), the value of which will 
be discussed below. In the one-dimensional model 
that we are considering, the contribution of dis- 
location spreading and generation to 3p/Ot is 
therefore written as 

ap = - - k v - -  (10) 
s,g 0x 

since we assume a constant velocity for the dis- 
locations. 

Combining Equations 8 and 10 we obtain for 
the total variation of p with time the following 
equation 

3p 
_ o kvOp. (11) 

5 t  "c a ~x  

Equations 7 and 11 are an example of the general 
form of the constitutive law indicated in Section 2 
(Equations 3) for inhomogeneous deformation; 
the mobile dislocation density, p, is the structure 
variable. 

3.2. Steady state Luders band 
Equation 11, with ra, k and v constants, admits a 
steady state solution, p = p ( x - -  VLt), which 
represents a deformation state that travels at a 
constant velocity VL in the direction + x. Writting 

} = x - - v L t  (12) 

Equation 1 1 is transformed into 
dp p (vL -kv )  - 

d~ ra 
which integrates to 

(13) 

where L = ( kv - -  vL)ra. (14) 

This deformation state does not represent a Ltiders 
band, since, at fixed time, p (and therefore 4) varies 
monotonically with x. In a Liiders band there is a 
section xL where ~ is larger than in the rest of the 
band; when the band moves with a velocity vL it is 
XL = VLt, if the band is at the origin for t = 0. To 
meet this situation we have to use different sol- 
utions of the type (Equation 14), with different 
values of  ra and k, ahead and behind the band. We 
assume however that in each region ra and k are 
constants. It is easily seen that the required 
solution is 

( x- -t P = poexp  -~ ] x>~vLt (15a) 

x - -  v L t 1 
p = p 0 e x p \  L2 ] X<.VLt (15b) 

where the first equation applies ahead of the band 
and the second behind the band, and L1 a n d - L 2  
are the values of  L in the two regions. Both L1 and 
L2 have to be positive for Solution 15 to be 
physically acceptable. Ahead of the band k = kl is 
larger than unity, but behind the band k = k2 < 1 
because (Op/bx)< 0 in this region (cf. Equation 
10). When necessary, we shall assume that ra is the 
same everywhere (in fact, Za should be larger ahead 
of the band where the density of forest dislocations 
is smaller). Then 

L1 = ( k l v - v L ) %  

L2 = (v r - - k2v )  ra. (16) 

Because L1, L2 > 0, the band velocity vL must 
be in the interval k2v, kl v. We write 

v L = f v  (17) 

where k2 < f < k l .  This relation, with f "~ 1, was 
first proposed by Hahn [20]. Other treatments 
[18] lead to fbetween 0.2 and 0.8. 

It should be noted that the Solution 15, of the 
equations for the variation of p, represents a 
steady-state band because it was admitted that the 
band peak x L moves with a velocity vL. A moving 
band cannot be obtained from the simplified 
Equation 11 without this additional requirement. 
Even so, the band velocity is not determined by 
the model; any velocity between k2v and kxv is 
acceptable. A steady-state moving band could 
eventually be obtained as a solution of the general 
form of Equation 11 with % and k functions of  
P and v function of p and 3p/3x. The form of 
these functions is, however, poorly known. 

3.3. Band parameters 
We can now find various properties and parameters 
of the band described by Equations 7 and 15. The 
variation of ~ with x when the band is at the 
positon XL is given by ( -x4 

4(x) = p o b v e x p  k'L2 ] X>~XL (18a) 

d(x) = pobvexp~---~2 ] x<~x L (18b) 

where we introduced 

k* = L-2 (19) 
L2" 
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Figure I Strain rate profiles ~(x) at  a Liiders band for various values of the parameter k*. 

In general, the strain rate is larger ahead of the 
band than behind it, for the same distance to the 
band peak, implying k* > 1. Fig. 1 shows plots of 
the strain rate profile for two values of k* > 1. 
Also shown is the symmetric profile for k* = 1. 
The reference length d in the abcissa is the band 
width (see below, Equation 25). 

At a fixed position,x = 0 for example, the strain 
rate varies with time according to 

~ ( x = 0 ; t )  = pobvexp.,-ZT--, i t~<0 (20a) 
\ x L 2 /  

Oo bv 

0.5 

I VLtl 
~(x =O ; t )  = PobVexp [---~2 / t >~O (20b) 

Fig. 2 shows the variation of ~ with time, at a 
given section, for three values of k*. 

The accumulated strain at a fixed position (x = 
0) is obtained from Equations 20 in the following 
way 

e ( x = o ; o  = ff ~ d t  = pobv k-L2 
V L 

~ J t <. o 
(21a) 

-6  -5  - I ,  -3  - 2  
0 D 

-1  0 1 2 3 4 vff /L z 

N'gure 2 Strain rate at a fixed section as a function of t ime due to t h e  passage of  a Liiders band, for various values of  
the parameter k*. The band peak crosses the section at t = 0. 
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Figure 3 Strain at a fixed section as a function of time for various values of k*. The vertical bars indicate the instants 
at which the strain rate is 1/e of its value at the peak and their separation is therefore proportional to the band width. 

e ( x = O ; t )  = p o b v  k-L2 + ~dt  
VL 

Fig. 3 shows plots of  e as a function of  t obtained 
from Equations 21 for various values o f  k*. These 
curves can be compared with those recorded by a 
transversal extensometer placed at a section of  a 
specimen (see below). 

The band strain, eL, is obtained by making 
t. = oo in Equation 21b: 

eL = Po by  L-'R~ (1 + k*). (22) 
vL 

The rate of  extension, L, can be calculated from 
Equations 3 and 18 with, for example, xL = 0 

L = p o b v  exp -- dx 

+ -= exp dx = pobVL2(1 +k*) .  (23) 

Combining Equations 22 and 23, we obtain the 
well-known relation 

i, = eL vL. (24) 

The band width, d, can be defined (arbitrarily 
but consistently) as the separation between two 
sections, on opposite sides of  the band peak, 

where d is a fraction 1/e o f  its value at the peak. 
From Equation 25 we find 

d = L x + L 2  = L 2 ( l + k * ) .  (25) 

We may also define an average band strain rate, eL, 
such that J~ = ddL: 

dL = pobv. (26) 

The decay time r a depends on the velocity v 
of the dislocations, for a given structure. In the 
theories of  strain ageing [21, 22] it is admitted 
that the dislocations are aged while waiting at 
obstacles, and a characteristic waiting time, tw, 
is introduced. When serrated yielding occurs, this 
time is comparable to an ageing time, ta, which 
depends on the kinetics o f  diffusion of  the solute 
to the waiting dislocations [21,22].  The ageing 
time ta is distinct from ra, although it is probably 
proportional to %. 

In order to compare the predictions of  the 
treatment presented with experimental results, 
it is convenient to introduce a characteristic 
length, X, defined by 

3, = v fa (27) 

which is the average length travelled by the dis- 
locations in time ra. The length 3, can be defined 
even if immobilization is not due to the formation 
of  solute atmospheres at the dislocations. It has 
the advantage over ra of  being independent of  v, 
for a given structure. Assuming that r a is the 
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Figure 4 Experimental curve, Aq~(t), obtained with a tranversal extensometer and calculated points (see text). The bars 
indicate the time interval corresponding to the band width. 

same ahead and behind the band peak, and using 
Equations 16, we may rewrite Equation 25 in 
terms of  X as 

d = /x~: X (/Xk = k ~ - - k 2 ) .  (28)  

Using Equations 17 and 25, the Equations 22 and 
23 for eL and L can be written in the form 

b 
eL -- p o T d  (29) 

L = Pob vLd (30) 
f 

3.4. Comparison with experimental results 
There are two types of  Laders band deformation 
in solids to which the previous treatment can be 
applied. The first type occurs in normal ~isc0n- 
tinuous yielding (e.g. in low carbon steels) where 
one band is formed near one grip and then travels 
under a fairly constant load (at constant L) to the 
other end of  the specimen. Homogeneous defor- 
mation occurs after this regime, which suggests 
that ra is larger or comparable to the time of 
transit of  the band, so that a reasonable density of  
mobile dislocations is available after band propa- 
gation. 

The second type is the one that leads to period- 
ically serrated tensile curves (type A Portevin-Le 
Chatelier effect). Successive bands travel from one 
specimen end to the other, under a slightly increas- 
ing load at constant L. This increase in load is due 
to a strain gradient that develops in the specimen 
[23, 24] as a result o f  a larger strain rate ahead of 
a moving band. It is possible, under special con- 
ditions [25], to eliminate the strain gradient, in 
which case successive bands propagate at increas- 
ing but constant stresses. The ageing time ra in this 
second type of band propagation is expected to 
be smaller than the time of  transit o f  each band. 

The accumulated strain derived from the model 
(Equations 21 and Fig. 3) can be directly compared 
with transversal extensometer curves. Such curves 

give the local diameter change, Aq~, at a section as 
a function of  time. Because the band strain is small, 
A~b is proportional to e. Fig. 4 shows an example 
of  an extensometer curve (full curve) obtained 
with a commercial aluminium alloy (wire specimen 
dimensions: 6.8 cm;0.10 cm2;extension rate, 3.3 x 
10 -4 cm sec -1) which upon suitable heat treatment 
[26] exhibits type A serrated curves. Similar 
extensometer curves have been obtained by van 
Westrum and Wijler [27]. The marked points in 
Fig. 4 were calculated from Equation 21 with 
k* = 1.5 and L2/VL = 0.48 sec. Using the measured 
value v L = 0 .23cmsec  -1 (transit time approxi- 
mately 30 sec) we find L2 = 0.093 cm, L1 = 0.140 
cm and a band width of 2.4 ram. It is not possible 
to calculate 7a because kl and k2 are undeter- 
mined. The vertical dashed lines in Fig. 4 corres- 
pond to the time interval that a signal (the band) 
of  width d takes to pass through a particular sec- 
tion and fire centred at the instant of  passage of  
the band peak. This stresses the arbitrariness inthe 
definition o f  the band width and the associated 
difficulty of obtaining this parameter from trans- 
versal extensometer curves. 

In materials exhibiting type A serrated curves, 
both the width and the velocity decrease for the 
successive bands, at constant L [24 ,26-28] .  
Equation 28 predicts this effect on d, since the 
average length k certainly decreases with accumu- 
lated strain. The decrease in vL corresponds to a 
decrease in v, which occurs (in spite of  the increas- 
ing stress in normal type A effect) because of  strain 
hardening. 

It is also experimentally found [27, 28] that 
both eL and d slightly increase with/~ (for the 
same accumulated strain). In one case [29], the 
width was found to be independent of/~. Thisindi- 
cates that X may increase slightly with applied rate. 
The  increase in k and a similar effect on Po in 
Equation 29, may explain the increase of  eL with 
L. 

Equation 29, with f =  1, has been derived by 
other methods [24, 31] and used [24, 29 -31]  to 
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calculate mobile dislocation densities at Ltiders 
bands from measured values of  eL (or  VL) .and d. 

Finally we refer briefly some results related to 
Ltiders bands in discontinuous yielding. The band 
strain, eL,  was found to be independent of  applied 
extension rate [31] in agreement with Equation 28 
and 29, and inversely proportional to the grain size 
[31,32].  This suggests that X is inversely propor- 
tional to the average grain diameter. Lloyd and 
Morris [31] identified these two quantities and 
used an equation similar to Equation 29 to calcu- 
late mobile dislocation densities. A strong depen- 
dence of  VL on/~ was reported in this work; this 
dependence is of  course directly related to the 
strong effect of  o on dislocation velocity. 

4. Discussion 
The general form of  a constitutive law for inhomo- 
geneous flow contains extra variables in relation to 
the equations for homogeneous deformation. The 
extra variables are the gradients of  the scalar 
structure variables; in general they appear both in 
the rate equation and in the equation for the time 
rate of  change of  the structure variables. This 
generalized form of  the constitutive equations 
should be used in theoretical studies of  plastic 
instability (necking) and is obviously the one 
appropriate to describe Lt~ders band deformation. 

Hart [33] has analysed the inhomogeneous 
deformation of  a tensile specimen by simply con- 
sidering the static equilibrium of  forces along the 
specimen (to obtain a(x))  and assuming a con- 
stitutive equation of  the type a(4, e), which is of  
course questionable. If his results (Equation 3 
in [33]) are applied to a strain rate insensitive 
material, it is found that de/dx = 0, implying that 
in a specimen of  such a material a strain gradient 
can never develop. There is, in fact, in Hart's 
treatment an incorrect identification o f  the strain 
increment as a function o f  position with the (time 
dependent) strain increment produced by defor- 
mation at each section. Hart's final equation for a 
steady state band (Equation 5 in [33]) is therefore 
incorrect. 

The strain rate profile at a steadily moving 
Ltiders band has been obtained in the present work 
by integration of  simplified constitutive equations 
of  the required form, in which the mobile dis- 
location density plays the role of  the structure 
variable. The constitutive equations were written 
based on a balance of  the dislocation density at 
each point, which takes into account the spreading, 

ageing and generation of  dislocations. With the 
simplifications introduced, it is not possible to 
predict the formation of  a Laders band and its 
transition to a steady or quasi-steady propagation 
regime. It was also not attempted to explain the 
load drops associated with the nucleation of  
bands. The inclusion of  these effects has been 
attempted by S~ndstrom and Lagneborg [18]. 

The model was developed for a band propagat- 
ing under a constant stress and the steady state 
solution obtained shows a strain rate profile 
extending to infinity. In spite of  the simplifications 
introduced, the calculated strain profile as a func- 
tion of  time at a given location compares very well 
with that recorded by a transversal extensometer 
placed on a specimen exhibiting the type A 
Portevin-Le Chatelier effect, when the band propa- 
gates under a slightly increasing load in a strain 
gradient and, therefore, is only approximately a 
steady state band. 

The properties of  the band parameters obtained 
fl'om the model also compare very weII with those 
found experimentally. Finally, it is remarkable 
that the model leads to an often quoted relation 
between the Lt~ders strain, the band width and the 
mobile dislocation density (Equation 29). 
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